TOTAL SYNTHESIS OF d1-ILLUDOL

Takeshi Matsumoto, Katsuji Miyano, Shohei Kagawa, Suji Yu Jun-ichi Ogawa, and Akitami Ichihara

Department of Chemistry, Hokkaido University, Sapporo, Japan (Received in Japan 5 August 1971; received in UK for publication 17 August 1971)

Illudol, a sesquiterpene alcohol isolated from <u>clitocybe illudens</u>, has been characterized as 1 by Anchel et al.¹. Although the stereochemistry of the sesquiterpene has not yet been reported, the structural relationship with other illudoids suggests the stereochemistry 2 except for the configurations of the secondary hydroxyl groups.² We should like to report here a synthesis of the racemic compound 2, which does exhibit spectra completely identical with those of natural illudol.

The cis-anti-cis cycloadduct 3 3,4,5 was treated with allylmagnesium bromide in abs ether (25°, 1 hr) to yield a diol 4 4 (65%, $\nu_{0H}^{0.03M}$ CCl₄ 3534cm⁻¹; nmr & 0.97 (6H)s, 1.08 (3H)s, 1.11 (6H)t, 2.00 (2H)s, (cyclobutane), 3.45 (4H)q)⁶ which was ozonized in ethyl acetate (-78°, 1 hr reductive cleavage with potassium iodide) to give an aldehyde 5.3,4 Oxidation of the aldehyde function of 5 with silver oxide in dioxane-7% aq sodium hydroxide (2:1, 5° , 1 hr) followed by methylation with diazomethane afforded a dihydroxy ester $6^{3,4,6}$ mp 77-78° (50%). Oxidative cleavage of 6 with sodium periodate in methanol-water-pyridine (1:1:0.1, 25°, 20 hr)and concomitant aldol condensation led to an isomeric mixture of 7a and 7b 4 (1:1 by nmr, 98%, ir (neat) 1760, 1720, 1648 and 1610cm⁻¹; nmr & 0.90 (3H)s, 1.01 (3H)s, 1.17 (6H)t, 1.23 (3H)s, -2.47 (0.5H)s), which on dehydration by methanesulfonyl chloride-pyridine (51°, 3 hr) afforded an enone 8 7,8 mp 83-84° (52%, ir 1735, 1718 and 1680cm⁻¹; nmr & 0.99 (3H)s, 1.11 (6H)s, 3.31 (2H)s, (-CH2- on the four-membered ring)). Reduction of 8 with sodium dihydro-bis(2-methoxyethoxy)aluminate in benzene (25°, 20 hr) gave a 47% yield of a diol 9^{7,9} (ir 3350, 1720cm⁻¹; nmr 1.00 (3H)s, 1.15 (3H)s, 1.20 (3H)s, 2.80 (2H)s, 3.42 (2H)s) and a 17% yield of an epimer 10 7,

mp 125-127° (ir 3400 and 1720cm⁻¹; nmr § 1.00 (6H)s, 1.10 (3H)s, 2.75 (2H) bs, 3.60 (2H)bs). Treatment of 9 with acetone and p-toluenesulfonic acid led to an unstable acetonide 11 (68%, ir 1890 and 1728cm⁻¹; nmr § 1.08, 1.17, 1.26, 1.38 (each 3H,s)). Reduction of 11 with sodium dihydro-bis(2-methoxyethoxy)aluminate in benzene (25° , 24 hr) afforded stereospecificially the desired <u>dl</u>-illudol (70%).¹⁰ The spectral data (<u>m/e</u> 234.1578 (Calcd for $C_{15}H_{22}O_2$ (M⁺-H₂O) 234.1619], 216.1608 (Calcd for $C_{15}H_{20}O_1$ (M⁺-H₂O×2) 216.1614); ir 3350, 1113 and 1005 cm⁻¹; nmr (pyridine-d₅) § 0.92 (3H)s, 1.04 (3H)s, 1.27 (3H)s, 4.21 (1H)t, J=7Hz, 4.70 (2H)s, 4.95 (1H)m, 6.01 (3H)s) and the R_f values on the of synthetic illudol were completely identical with those of natural illudol.

Acknowledgement

We are grateful to Dr. M. Anchel (New York Botanical Garden) for her generous gift of a sample of natural illudol. Our thanks are also due to the Takeda Science Foundation for financial support.

References

- T. C. McMorris, M. S. R. Nair, and M. Anchel, J. Am. Chem. Soc., <u>89</u>, 4562 (1967). For the synthesis of a biogenetically related compound, illudin M, see T. Matsumoto, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, F. Sakan, S. Matsumoto, and S. Nishida, <u>1bid.</u>, <u>90</u>, 3280 (1968).
- 2. The absolute structures of hirsutic acid (F. W. Comer, F. McCapra, I. H. Qureshi, and A. I. Scott, <u>Tetrahedron 23</u>, 4761 (1967)) and of fomannosin (J. A. Kepler, M. E. Wall, J.E. Mason, C. Basset, A. T. McPhail, and G. A. Sim, <u>J. Am. Chem. Soc.</u>, <u>89</u>, 1260 (1967)) have been shown as i and ii respectively. If the absolute configuration at the A/B ring juncture of illudol 1 is identical with that of i and the absolute configuration at the quarternary carbon atom on the four-membered ring is common in i and ii, illudol should have a <u>cis-anti</u> carbon framework of 2.

- 3. Reasonable ir and nmr spectra have been obtained for this compound.
- 4. The molecular formula of this compound has been confirmed by elementary analysis and by mass spectrometry.
- 5. S. Kagawa, S. Matsumoto, S, Nishida, S. Yu, J. Morita, A. Ichihara, and T. Matsumoto, Tetrahedron Lett., No. 44, 3913 (1969).
- 6. All the nmr spectra were taken in deuterochloroform solution with TMS as internal standard.
- 7. The molecular formula of this compound has been ascertained by exact mass spectrometry.
- 8. Inspection of molecular models indicates that in this case the cisperhydroindenone structure 8 is more stable than the trans isomer, because of the flattened conformation of the six-membered ring.
- 9. The hydroxyl/angular methyl cis structure is assigned for the major product 9, since attack of the reducing reagent from the less hindered side of 8 is clearly more favorable.

10. The configuration of newly formed hydroxy group is cis relative to the angular methyl group by the similar reason as in the footnote 9.

